
Prof. V. V. Subrahmanyam,
Director

School of Computer and Information
Sciences

IGNOU, New Delhi
Date: 10-04-2020 Time: 11-00

Introduction
Knowledge in a programming language is

prerequisite to the study of most of the
computer science courses.

A programming language is the principal
interface with the computer.

Understanding the variety of programming
languages and the design trade offs between
the different programming paradigms makes
it much easier to master new languages
quickly.

Algorithm

An algorithm is a finite set of steps
defining the solution of a particular
problem. An algorithm is expressed
in pseudocode - something
resembling C language or Pascal, but
with some statements in English
rather than within the programming
language.

Example -1
Let us try to develop an algorithm to compute and
display the sum of two numbers:

1. Start

2. Read two numbers a and b

3. Calculate the sum of a and b and store it in
sum

4. Display the value of sum

5. Stop

Example -2
Algorithm to calculate the factorial of a given number.

1. Start

2. Read the number n

3. [Initialization] i 1 , fact 1

4. Repeat steps 4 through 6 until i = n

5. fact fact * i

6. i i + 1

7. Print fact

8. Stop

Check your progress - 1

 Write algorithms for the following simple problems:

 To find the largest among the 3 numbers given.

 To find the sum and average of given 10 integers.

 To check whether the given number is prime or not.

 To check whether the given number is odd or even.

Flowchart

 Flowchart is a graphical representation of an
algorithm.

 It makes use of symbols which are connected
among them to indicate the flow of information
and processing.

 It will show the general outline of how to solve a
problem or perform a task.

 It is prepared for better understanding of the
algorithm.

Flowchart Symbols

Flowchart for sum of 2 numbers

Check Your Progress - 2

 Draw Flowcharts for the following simple problems:

 To find the largest among the 3 numbers given.

 To find the sum and average of given 10 integers.

 To check whether the given number is prime or not.

 To check whether the given number is odd or even.

Programming Language and a Program

Programming Language: In practice,
it is necessary to express an algorithm
using some programming language to
instruct the computer to solve the
problem.

Program: A sequence of instructions
written in any programming language
to solve the problem using a computer.

Categories of Programming
Languages

Low level languages or Machine
oriented languages

High Level Languages or Problem
Oriented languages

Low level languages or Machine oriented
languages

Whose design is governed by the circuitry and
the structure of the machine.
Difficult to learn
 These are designed to give a better machine

efficiency i.e., faster program execution.
Machine dependent.

Examples: Machine language, Assembly
language

High level languages or Problem
Oriented languages

These are oriented towards describing the
procedures for solving the problem.

Machine Independent

Easy to learn

Machine directly cannot understand
them.

Examples: FORTRAN, PASCAL, C etc.

C Programming Language

Developed at AT & T Bell Laboratory
in 1970’s.

Designed by Dennis Ritchie.

Salient features of C
General Purpose, structured

programming language.

 It can considered as a High level
language, however as it combines both
the features, it can be treated as a Middle
level language.

Portable

Easy to debug

Easy to test and maintain

Structure of a C Program
/*Comments*/

Preprocessor directives

Global data declarations

main()

{

Declaration part;

Program Statements;

--

}

User defined functions

A Simple C Program

/* Program to print a message*/

#include <stdio.h>

main()

{

printf(“I am in the first semester of MCA\n”);

}

Program to add to numbers

/* Program to add to numbers*/

#include <stdio.h>

main()

{

int a, b , sum;

printf (“ Enter the values of a and b:\n”);

scanf(“%d, %d”, &a, &b);

sum = a+b;

printf(“the sum is %d”, sum);

}

C Character Set

Uppercase Letters: A to Z

Lowercase Letters: a to z

Digits: 0 to 9

Certain Special characters as building
blocks to form basic program elements (e.g.
constants, variables, operators, expressions
etc..)

Special symbols: %, &, +, _ , - # etc.

Identifiers
 Identifiers are the names that are given to the various

program elements, such as variables, functions and
arrays.

 Identifiers consist of letters and digits, in any order,
except the first character must be a letter.

 Both upper case and lower case are allowed.

 No special symbols, except the underscore(_) is
allowed.

 An identifier can also begin with an underscore(_).

Examples: x, y12, sum_1, amount, _temp etc..

Keywords

Reserved words that have standard,
predefined meaning in C language.

These are used for intended purpose
only, these cannot be used as
programmer-defined identifiers.

Examples: auto, break, case, switch, for,
goto, struct etc..

Basic Data types
Data type Description Typical

Memory
Requirements

Int Integer 2 bytes or one
word

Char A Character 1 byte

Float Decimal number 4 bytes

Double Double precision 8 bytes

Constants

Integer Constants

Floating-point constants

Character Constants

String Constants

Variables

 It is an identifier that is used to represent
some specified type of information within
a designated portion of a program.

 Is used to represent a single data item (a
numerical quantity or a character
constant).

The data item must be assigned to the
variable at some point of the program and
later it can be referenced with the name.

Declarations
A declaration associates a group of variables

with a specific data type.
 In C, all the variables must be declared

before they can appear in executable
statements.

Examples: int a;
int a, b, c;
char flag;

Symbolic Constants

 It is the name that substitutes for a sequence of
characters.

 The characters may represent a numeric
constant, a character constant and a string
constant.

Examples: #define RATE 0.23

#define PI 3.1415

#define TRUE 1

Statements

A statement causes the computer to carry
out some action.

Expression statement

Compound statement

Control statement

Arithmetic Operators

Operator Purpose

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder after
the division

Relational Operators
Operator Meaning

< Less than

<= Less than or equal to

> Greater than

>= Greater than or
equal to

== Equal to

!= Not equal to

Logical Operators

Operator Meaning

&& And

|| Or

Assignment Operator

Identifier = expression;

Examples: a = 3;

x=y;

i=j=1;

area = Length * breadth;

Conditional Operator

The syntax is as follows:

(condition)? (expression1): (expression2);

Examples
(i) x= (y<20) ? 9: 10;

This means, if (y<20), then x=9 else x=10;

(ii) printf (“%s\n”, grade>=50? “Passed”: “failed”);

The above statement will print “passed” grade>=50
else it will print “failed”

(iii) (a>b) ? printf (“a is greater than b \n”): printf (“b is
greater than a \n”);

C Shorthand
 C has a special shorthand that simplifies coding of

certain type of assignment statements.

For example:

a = a+2;

can be written as a += 2;

 Syntax: variable operator = variable / constant /

expression

Precedence of Operators

Operators Associativity

()

! ++ -- (type) sizeof

/ %

+ -

< <= > >=

== !=

&&

||

?:

= += -= *= /= %= &&= ||=

,

Left to right

Right to left

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Right to left

Right to left

Left to right

